

A/C Model Development and Validation

P.I.: Jason A. Lustbader
National Renewable Energy Laboratory

Team: Tibor Kiss and Larry Chaney

May 13, 2013

Project ID VSS120

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Background

- When operated, the air conditioning (A/C) system is the largest auxiliary load
- A/C loads account for more than 5% of the fuel used annually for light-duty vehicles (LDVs) in the United States¹
- A/C load can have a significant impact on electric vehicle (EV), plug-in hybrid electric vehicle, and hybrid electric vehicle performance
 - Mitsubishi reports that the range of the i-MiEV can be reduced by as much as 50% on the Japan 10–15 cycle when the A/C is operating²
 - Hybrid vehicles have 22% lower fuel economy with the A/C on³
- Increased cooling demands by an EV may impact the A/C system
- A/C contributes to heavy-duty vehicle idle and down-the-road fuel use

Fuel Use Rate

Integral part of

improved high-level

^{1.} Rugh et al., 2004, Earth Technologies Forum/Mobile Air Conditioning Summit

^{2.} Umezu et al., 2010, SAE Automotive Refrigerant & System Efficiency Symposium

^{3.} Idaho National Laboratory, Vehicle Technologies Program 2007 annual report, p145.

Overview

Timeline

Project Start Date: FY11

Project End Date: FY13

Percent Complete: 80%

Budget

Total Project Funding:

DOE Share: \$900K

Contractor Share: \$0k

Funding Received in FY12: \$300K

Funding for FY13: \$300K

Barriers

- Cost Timely evaluation of HVAC systems to assist with R&D
- Computational models, design and simulation methodologies – Develop tool to help with optimization of future HVAC designs and prediction of impacts on fuel economy
- Constant advances in technology Assist industry advance technology with improved tools

Partners

- Collaborations
 - Halla Visteon Climate Control (Visteon)
 - Argonne National Laboratory (ANL)
 - Daimler Trucks
- Project lead: NREL

Relevance/Objectives

Overall Objectives

- Develop analysis tools to assess the impact of technologies that reduce the thermal load, improve the climate control efficiency, and reduce vehicle fuel consumption
- Develop an open source, accurate, and transient A/C model using the
 Matlab/Simulink environment for co-simulation with Autonomie
- Connect climate control, cabin thermal, and vehicle-level models to assess the impacts of advanced thermal management technologies on fuel use and range

FY12/13 Objectives

- Improve mechanical LDV A/C model and validate
- Add electrical compressor capability and associated controls
- Develop simplified model options for more rapid, less detailed analysis,
 with a focus on vehicle co-simulation with Autonomie
- Demonstrate co-simulation of A/C system with Autonomie
- Develop heavy-duty vehicle sleeper and cab A/C system models
- Release A/C model plug-in for Autonomie

Milestones, FY12-FY13

Date	Milestone or Go/No-Go Decision		
04/01/2012	Delivered stand-alone model to Visteon		
06/14/2012	Delivered electric A/C model to ANL		
06/01/2012	Completed initial validation		
09/30/2012	Completed summary report and first release of the A/C model		
04/15/2013	Autonomie integrated model released		
04/16/2013	SAE World Congress paper "A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink," SAE 2013-01-0850		
09/30/2013	Summary report and second release of the A/C model		

Approach – Matlab/Simulink-Based Tool

- Base a simulation tool on first principles; conservation of mass, momentum, and energy are solved in 1-D finite volume formulation
- Create open source software tools and make them available to the public
- Easily interface to Autonomie vehicle simulation tool
- Develop flexible software platform, capable of modeling vapor compression refrigeration cycle
- Model refrigerant lines and the heat exchangers as 1-D finite volumes, accounting for the lengthwise distribution of refrigerant and flow properties
- Include all major components: compressor, condenser, expansion device, evaporator, and accumulator/dryer (receiver/dryer)
- Provide model options with a range of run times while minimizing the impact of increasing speed on accuracy to meet a range of analysis needs

Approach: Three Model Versions

Serving Different Customer Needs

Model Type	Application	Speed	Accuracy
Full Transient (finite volume, fully conservative)	Detailed A/C models for design and control	1/12th of real time	Highest, time- resolved
Quasi-Transient (simplified refrigerant volumes)	Detailed vehicle co- simulation and created mapped components	Real time	Moderate
Mapped Component (simplified refrigerant volumes and heat exchangers)	High level co-simulation with a vehicle focus	10 X real time (estimated)	Lowest

Approach: Climate Control System Integration with Autonomie

Enables co-simulation with vehicle models

A/C Model Development

Development of Component Models, Heat Exchanger

Four refrigerant passes in this example

- Four refrigerant passes become four flow paths in this example
- Each flow path is divided into many segments, or finite volumes
- The 1-D finite volumes account for the lengthwise distribution of refrigerant and flow properties

Accomplishments: Heat Transfer

Improved heat transfer and fin heat loss calculations

Pipe wall to refrigerant

$$Q_{tr} = \overline{h}_{tr} A_t (T_t - T_r)$$

Heat transfer from air to pipe wall³

$$Q_{at} = \left(\dot{m}_a \cdot C_{p,adry} + \dot{m}_w \cdot C_{p,w}\right) \cdot \left(T_{a,o} - T_{a,i}\right)$$

$$T_{a,o} = T_{a,i} + \left(T_t - T_{a,i}\right) \cdot \left[1 - \exp\left(\frac{-\bar{h}_a A}{\dot{m}_a \cdot \left(C_{p,adry} + \omega C_{p,w}\right)}\right)\right]$$

Calculation assumptions:

- h_{wr} obtained from Dittus-Boelter equation and Chen correlation
- h_a obtained through correlations for louver fin compact heat exchangers^{1,2}
- Fin effectiveness calculated using Number of Transfer Units (NTU) method
- Pipe modeled as radially isothermal, contains thermal mass
- Saturated mixture refrigerant properties are quality averaged values of sat. liquid and sat. vapor
- System accounts for possible water condensation in the air stream

^{1.} Chang, Y.J., and Wang, C.C., "A Generalized Heat Transfer Correlation for Louver Fin Geometry," Int. J. Heat Mass Transfer, Vol. 40, No. 3, pp. 533-544, 1997

^{2.} Chen, J.C. (1966). "A Correlation for Boiling Heat Transfer of Saturated Fluids in Convective Flow," Ind. Eng. Chem. Process Ses. Dev., Vol. 5, No. 3, pp. 322-329.

^{3.} See nomenclature slide at end of presentation

Accomplishments: Compressor

Added electric compressor and associated controls

Compressor, general

Mechanical (piston) or electrical (scroll), electrical added this year

- Volumetric efficiency
- Discharge enthalpy found using isentropic efficiency

Electric compressor

- RPM controlled by T_{wall,evap,exit} (metal T)
- Blower air mass flow rate controlled by T_{air,cabin}
- No windup PI controllers implemented

 If compressor RPM command goes below limit, compressor cycles off. When compressor comes back, it starts up near this limit

[1] Compressor photograph, NREL, John Rugh & Jason Lustbader

[1]

Accomplishments: Thermal Expansion Device (TXV)

Semi-dynamic model improves TXV accuracy

Thermal Expansion Device (TXV)

- Two-phase equilibrium orifice flow model
- Capturing flow area dependence on evaporator-out superheat
- Semi-dynamic¹ model addresses response time issues
 - Valve ball position determined from static force balance
 - One dynamic factor bulb temperature response to evaporator exit temperature
 - Response is fast to pressure differences but slow to temperature changes – just like in a real TXV

$$\dot{m} = C_d(dP_e) \cdot \rho_{throat} \cdot v_{throat} \cdot A_{orif}$$

Discharge coefficient from experimental data accounts for non-equilibrium effects

¹ This was found to have superior performance to a full dynamic model, which was also developed

Accomplishments: Component Validation *Validation data cover wide range of operating conditions*

- Model results compared to 22 steady-state experimental bench data points provided by Visteon
- Test points cover a wide range of operating conditions

Range of Bench Test Data						
	Low	High	Units			
Vehicle speed	0	112	km/h			
Ambient air temperature	21	43	°C			
Relative humidity	25	40	%			
Evaporator air inlet temperature	10	43	°C			
Evaporator air flow	0.042	0.137	m³/s			

Accomplishment – Component Validation

Improvements to model resulted in better agreement with data

Evaporator heat transfer average error of 1.4%

5.0

1.0

1.0

1.2

3.4

5.6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Validation Case

Accomplishment – System Validation, Typical Point

Good Agreement for System Thermodynamic Cycle

Full transient model

Accomplishments – Autonomie Integration

Top-level model, adjusted code for better integration with next Autonomie release

Accomplishments – Autonomie Integration

Second-level model: Compressor made separate and cabin moved to chassis

Accomplishments – Autonomie Integration

Third-level A/C model: Components, compressor separated

Accomplishments – SC03 Cycle

System model SC03 example

Simulated the A/C system over drive cycle

- Used SC03 drive cycle
- Conventional 2wd Midsize Auto Default in Autonomie
- Demonstrated robust system performance and cabin cooldown

Conditions and Controls Settings

Variable	Value	Units
Ambient Temperature	30	°C
Cabin initial relative humidity	40	%
Solar load	1000	W
Cabin target temperature	20	°C
Air recirculation	90	%

Accomplishments – SC03 Cycle Evaporator Temperature Control

Evaporator freeze protection control reached in 87 sec

Accomplishments – SC03 Cycle Cabin Temperature Control

Cabin temperature control reaches set point in 359 sec

Accomplishments – SC03 Cycle Heat and Compressor Power

Dynamic thermal and mechanical power captured

Accomplishments – Quasi-Transient Model

Simplifications to increase maximum time step and thus speed by 12X

- Only refrigerant line and 0-D volume simulation blocks modified
- Modifications allow larger simulation time steps and thus faster execution speed
- Changes to refrigerant line blocks
 - Refrigerant side formulation no longer finite volume, algebraic marching scheme used
 - Mass flow rate
 - Same in all the segments of the line
 - Only state variable (calculated from its time derivative through an integration step)
 - Allows larger simulation time step
- Changes to 0-D volume blocks
 - Mass and energy are preserved
 - A modified bulk modulus is used (compressibility adjusted) to calculate the pressure in the volume
 - Allows for a larger time step

Accomplishment – Quasi-Transient Compared to Full Transient

Good agreement between models over full cycle, quasi-transient 12 times faster

Accomplishments – Mapped A/C Model development Faster execution time, ~10X real time (120 X Full Transient model)

- Heat exchanger calculations replaced by performance maps
- Quasi-transient model used to create lookup tables for the condenser and evaporator
 - 5- and 6-dimensional lookup tables are the best compromise between speed and accuracy, respectively
- Several thousand steady-state simulations were conducted for both condenser and evaporator to create the lookup tables
- Working on improving the model further

Collaboration

- Halla Visteon Climate Control
 - Technical advice
 - A/C system and component test data
 - Co-authored paper for SAE
 World Congress
- Argonne National Laboratory
 - Integration of A/C model into Autonomie
 - Vehicle test data
- Daimler Trucks
 - Support Super Truck work

- 1. Diagram courtesy of Visteon Corporation
- 2. Daimler Super Truck Logo, Courtesy of Daimler Trucks, 2011

Future Work

FY13

- Complete long-haul truck sleeper A/C system model for use with CoolCalc
- Validate model with ANL's
 Advanced Powertrain
 Research Facility (APRF) data
- Develop and release mapped component models (will run 10X real time) for cosimulation with Autonomie
- Release Autonomie A/C plug-in and updated standalone model

1. See VSS075, CoolCab Test and Evaluation & CoolCalc HVAC Tool Development presentation for more information

Summary

DOE Mission Support

- A/C use can account for significant portion of the energy used by light-duty and heavy-duty vehicles.
- Reducing A/C energy use is essential to achieving the President's goal of 1 million electric drive vehicles by 2015.

Approach

- Develop a transient open source Matlab/Simulink-based HVAC model that is both flexible and accurate. Base model on first principles and do not rely on component flow and heat transfer data as input.
- Interface HVAC model with Autonomie vehicle simulation tool to simulate effects of HVAC use on vehicle efficiency and range.

Summary

Technical Accomplishments

- Improved a Matlab/Simulink model of light-duty vehicle A/C system and showed close agreement with experimental data over a wide range of operating conditions
- Added electrical compressor capability and associated controls
- Improved model for co-simulation with Autonomie
- Developed simplified model options for more rapid, less detailed analysis, with a focus on vehicle co-simulation with Autonomie
- Developed an initial heavy-duty vehicle sleeper system model
- Presented "A new Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink" at SAE world congress.

Collaboration

- Halla Visteon Climate Control
- Argonne National Laboratory
- Daimler Trucks

Summary – Acknowledgments

- U.S. Department of Energy
 - Lee Slezak, Vehicle Technologies Program
 - David Anderson, Vehicle Technologies Program
- Halla Visteon Climate Control
 - John Meyer
- Argonne National Laboratory
 - Aymeric Rousseau

References

nomenclature

Q_{tr} is heat transfer from pipe wall to refrigerant

h_{tr} is the heat transfer coefficient from pipe wall to refrigerant

A, is the area of inner pipe surface

T_t is the pipe wall temperature

T_r is the refrigerant temperature

Q_{at} is heat transfer from air to pipe wall

m_a is mass flow of air

C_{p. adry} is constant pressure specific heat of dry air

m_w is the mass flow of water

C_{p,w} is constant pressure specific heat of water vapor

T_{a o} is air temperature out, or leaving

T_{a,i} is air temperature in, or entering

h_a is the heat transfer coefficient from air to pipe wall

A is the total heat transfer area

 ω is absolute humidity

Technical Back-Up Slides

A/C Model Development

Development of Component Models, Line Segment

Conservation Equations Solved in Refrigerant Lines

(One-dimensional Finite Volume Formulation)

Energy Equation:

$$\frac{dE}{dt} = Av_{in}\left(p_{in} + u_{in}\rho_{in} + \rho_{in}\frac{v_{in}^2}{2}\right) - Av_{out}\left(p_{out} + u_{out}\rho_{out} + \rho_{out}\frac{v_{out}^2}{2}\right) + Q_{tr}$$

where 'in' and 'out' subscripts mean inlet boundary and outlet boundary of finite volume, respectively

 $(F_{wf}$ is wall friction and Q_{tr} is heat addition rate)

Condenser wall to refrigerant: $Q_{tr} = \overline{h}A_i(T_t - T)$

where the film coefficient is calculated with the Dittus-Boelter equation:

$$\left(\overline{Nu}_D \equiv\right) \frac{\overline{h}D}{k} = 0.023 Re_D^{4/5} Pr^n$$

The coefficient n can be modified for a particular geometry.

Evaporator wall to refrigerant: $Q_{tr} = h_{tp}A_i(T_t - T)$

where the film coefficient is calculated with the Chen correlation:

$$h_{tp} = h_{FZ}S + h_LF$$
 (composed of the sum of boiling and convective contribution)

h_{FZ} is the Forster-Zuber correlation for nucleate boiling

$$h_{FZ} = 0.00122 \left[\frac{k_L^{0.79} c_{pL}^{0.45} \rho_L^{0.49}}{\sigma^{0.5} \mu_L^{0.29} h_{LG}^{0.24} \rho_G^{0.24}} \right] \Delta T_{sat}^{0.24} \Delta P_{sat}^{0.75}$$

(h_{LG} is the latent heat of vaporization, subscript L is liquid phase, subscript G is vapor phase, ΔT_{sat} is the temperature difference between the inner tube wall [T_{wall}] and local saturation temperature [T_{sat}])

h_L is the liquid phase heat transfer coefficient given by the Dittus-Boelter correlation

$$h_L = 0.023 Re_L^{0.8} Pr_L^{0.4} \left(\frac{k_L}{d_i}\right) \qquad Re_L = \frac{\dot{m}(1-x)d_i}{\mu_L} \qquad Pr_L = \frac{c_{pL} \mu_L}{k_L}$$

Evaporator wall to refrigerant (continued):

F is Chen's two-phase multiplier, and X_{tt} is the Martinelli parameter, which accounts for the two-phase effect on convection

$$F = \left(\frac{1}{X_{tt}} + 0.213\right)^{0.736} \quad X_{tt} = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_G}{\rho_L}\right)^{0.5} \left(\frac{\mu_L}{\mu_G}\right)^{0.1}$$

S is the Chen boiling suppression factor:

$$S = \frac{1}{\left(1 + 0.00000253Re_{tp}^{1.17}\right)} \qquad Re_{tp} = Re_{L}F^{1.25}$$

Chen, J.C. (1966). "A correlation for Boiling heat Transfer of Saturated Fluids in Convective Flow," *Ind. Eng. Chem. Process Ses. Dev.*, Vol. 5, No. 3, pp. 322-329.

Heat transfer from air to pipe wall:

$$Q_{at} = \overline{h}_a A_o (T_a - T_t)$$

 $j = 0.425 * Re_{Lp}^{-0.496}$ where j is the Colburn factor

j = St * Pr
$$^{0.666}$$
 and $St = \frac{h_a}{c_p \rho V}$

and Re_{Lp} is the Reynolds number based on the louver pitch.

Or the more general correlation by Chang and Wang

$$j = Re_{Lp}^{-0.49} \left(\frac{\theta}{90}\right)^{0.27} \left(\frac{F_p}{L_p}\right)^{-0.14} \left(\frac{F_l}{L_p}\right)^{-0.29} \left(\frac{T_d}{T_p}\right)^{-0.23} \left(\frac{l}{L_p}\right)^{0.68} \left(\frac{T_p}{L_p}\right)^{-0.28} \left(\frac{\delta_f}{L_p}\right)^{-0.05}$$

Where Θ is the louver angle, F_p is the fin pitch, L_p is the louver pitch, F_l is the fin length, L_l is the louver length, T_d is the tube depth, T_p is the tube pitch, and δ_f is the fin thickness.

Chang, Y.J., and Wang, C.C., "A Generalized Heat Transfer Correlation for Louver Fin Geometry," *Int. J. Heat Mass Transfer*, Vol. 40, No. 3, pp. 533-544, 1997.

A/C Model Development

Compressor Model

- Subscripts u and d are for upstream and downstream, respectively
- Mass flow rate:

$$\dot{m} = \rho_u \cdot \eta_{vol} \frac{dV}{rev} \cdot RPM/60$$

where $\eta_{vol} = \eta_{vol}(\frac{p_d}{p_u},RPM)$ and dV/rev is the displacement per revolution

• Downstream enthalpy (h_{d,actual}) calculated using isentropic efficiency:

$$h_{d,actual} = h_u + \frac{h_{d,isentropic} - h_u}{\eta_{isentropic}}$$

• where $h_{d,isentropic} = h(s_u, p_d)$ and $\eta_{isentropic} = \eta_{isentropic}(\frac{p_d}{p_u}, RPM)$

A/C Model Development

Thermal Expansion Valve (TXV) Model

- Two-phase equilibrium orifice flow model with feedback control on orifice flow area based on Evaporator-out superheat ('SH')
- Orifice flow model calibrated to measured data using a discharge coefficient that is dependent on dP_{ρ} 10^t

$$\dot{m} = C_d(dP_e) \cdot \rho_{throat} \cdot v_{throat} \cdot A_{orif}$$

Feedback control:

$$\frac{dA_{orif}}{dt} = -C \cdot (T_{SHtarget} - T_{SH})$$

- Large C results in quick convergence but may lead to hunting
- Small C results in slow convergence but avoids hunting